Novel Class of STING Agonists for Immuno-oncology

Sreerupa Challa1, Shenghua Zhou1, Anjaneeyulu Sheri1, Samantha Delaney1, Rayomand Gimi1, Seetharamaiyer Padmanabhan1, Geeta Meher1, Diane Schmidt, Dillon Cleary1, Santosh Khedkar2, Nezam Afdhal1, and Radhakrishnan Iyer1

1Spring Bank Pharmaceuticals, Inc., 113 Cedar Street, Milford, MA 01757, USA. 2ChemBio Discovery Solutions, Lexington, MA 02421, USA.

Abstract

Activation of Stimulator of Interferon Genes (STING) pathway in tumor cells and/or antigen presenting cells (APCs) within the tumor microenvironment (TME) can induce type I Interferon production leading to apoptosis of tumor cells, as well as, induction of adaptive immune response. Herein, we describe the discovery of highly potent and selective first-in-class STING agonist for application in immuno-oncology. The lead STING agonist SB 11285 has potent immune-modulating, as well as, anti-tumor activities and is being advanced for additional preclinical studies for application in immuno-oncology.

Results

SB 11285 is a potential STING agonist

Evaluation of IFN secretion and gene expression after SB 11285 treatment: THP-1 cells (A) and PBMCs (B) were treated with 5µM of SB 11285 for 20 hrs and gene expression was evaluated by Taqman Assays. Fold Induction was calculated by △Act method. (C) THP-1 and PBMCs cells were treated with 10µM of SB 11285 for 20 hrs and secretion of type I and type III Interferons was evaluated by Procartaplex multiplex assay.

SB 11285 inhibits tumor growth in 4T1 breast cancer model after intraperitoneal (i.p) administration

Evaluation of SB 11285 in 4T1 Breast Cancer Model: Briefly, 4T1 cells were implanted subcutaneously in mammary Fat Pad on day 1. SB 11285 was administered (i.p) on days 5, 7, 9, 11, 13, 17 & 19 @ 10 µg/kg in saline. (A) Tumor volumes measured for the entire study. (B) % of CD8+ T cells and (C) % of CD4+ T cells in spleen, lymph nodes and blood were measured on day 19 by flow cytometry.

IFN induction and cytokine expression profile in vivo after SB 11285 intraperitoneal (i.p) administration

A group of five, C57BL/6 mice were given intraperitoneal dosing of either saline or 10µg/kg SB 11285. Four hours after injection, serum was collected to investigate cytokine secretion. (A) MCTYTMAG-70K-PMX MILLIPEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel and (B) Procartaplex Luminex IFNα/β Mouse Cytokine Magnetic Bead Panel were used.

Conclusions

We have discovered highly potent first-in-class STING agonists that show excellent selectivity in induction of IFN, NF-κB, ISGs, and cytokines. The lead STING agonist SB 11285 has potent anti-tumor activities, is synergistic with anti-cancer agents, induces anti-tumor immune memory and is being advanced for additional preclinical studies for application in immuno-oncology.

SB 11285 significantly inhibits tumor growth in A20 lymphoma model and induces immune memory

Evaluation of SB 11285 in Syngeneic A20 Lymphoma Model: Briefly, A20 cells were implanted subcutaneously in the right flank region of mice. Dosing was initiated when tumor size reached 100mm3. SB 11285 was administered intratumorally (i.t) for 5 times on days 3, 6, 8 & 10 @ 100µg/kg in saline. Cyclophosphamide (CP) was administered intraperitoneally (i.p) for 2 times on days 1 & 2 @ 100 mg/kg. (A) Tumor volumes measured on day 22 after initiation of treatment. Statistical Significance for Kruskal Wallis Dunn’s or Mann-Whitney U test: ns = non-significant, * = P < 0.05, ** = P < 0.01, *** = P < 0.001 when compared to Vehicle Group. (B) Kaplan Meier survival analysis for a period of 71 days. (C) Immunohistochemistry of tumor tissues with anti-CD8 Antibody and (D) anti-Granzyme B antibody was performed one day after end of dosing (day 11) to evaluate infiltration of CD8 T cells and NK cells into tumor tissue. The images shown are a representative pictures from a group of 4. (E) After the end of the study, the complete responders were re-challenged with A20 cells implanted subcutaneously on opposite flank. The animals were monitored and tumor volumes were measured for 38 days post-implantation. (F) Response summary of the TGI and TGD studies in A20-lymphoma model.

SB 11285 is 1000-fold and 200-fold more active in inducing IRF and NF-κB respectively compared to 2’3’-cGAMP.

SB 11285 activates known STING Signaling pathway

Gel Shift Assay: A close structural analog of SB 11285 carrying a fluorescent substituent was synthesized for Gel Shift Assay. 250µM of SB 11285 with 20µM to 0µM of STING was incubated and subjected to electrophoresis on native gel for monitoring shift in the band size.

SB 11285 binds to STING

Evaluation of SB 11285 induced STING signaling pathway: (A) Expression of STING and phosphorylation status of IRF3, TBK-1 and IκB-α in THP-1 Cells was evaluated in THP-1 cells after treating with 5µM SB 11285 (B) The role STING, TBK1 & IRF3/7 in SB 11285-induced STING signaling was evaluated in Raw Macrophages. Wt, STING KO, TBK1 KO, IRF3 KO and IRF7 KO RAW-Lucia ISG Cells were either treated with 50µM of SB 11285 or DMSO. After 20h incubation, IRF activity was assessed using QUANTI-Iluce and % induction was calculated from fold change in luminescence/absorbance compared to DMSO treated sample.